题目内容

11.解方程:
(1)$\frac{x}{{x}^{2}-4}$+$\frac{2}{x+2}$=$\frac{1}{x-2}$
(2)$\frac{4}{2x+1}$=$\frac{x}{2x+1}$+1.

分析 两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:(1)去分母得:x+2(x-2)=x+2,
去括号得:x+2x-4=x+2,
移项合并得:2x=6,
解得:x=3,
经检验x=3是分式方程的解;
(2)方程两边同乘(2x+1),得4=x+2x+1,
解得:x=1,
经检验x=1是分式方程的解.

点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网