题目内容

16.如图,在平面直角坐标系xOy中,点A,B的坐标分别为(4,0),(2,0),现以B为圆心,1为半径在第一象限内画半圆,M,N是此半圆的三等分点,点P在$\widehat{MN}$上,射线AP交y轴于点Q,当点P从点M运动到点N时,点Q相应移动的路径长为(  )
A.$\frac{2}{3}$$\sqrt{3}$B.$\frac{8}{15}$$\sqrt{3}$C.2-$\frac{4}{5}$$\sqrt{3}$D.2$\sqrt{3}$-2

分析 延长AN交y轴于Q1,延长AM交y轴于Q2,作NE⊥OA于E,由NE∥OQ1,得$\frac{NE}{O{Q}_{1}}=\frac{AE}{AO}$求出OQ1,再证明∠BAM=30°,在RT△OAQ2中求出OQ2即可求出Q1Q2

解答 解:如图延长AN交y轴于Q1,延长AM交y轴于Q2,作NE⊥OA于E,
∵M、N是半圆的三等分点,
∴∠NBO=∠MBN=∠MBA=60°,
在RT△BNE中,∵BN=1,∠NBE=60°,
∴∠BNE=30°,EB=$\frac{1}{2}$BN=$\frac{1}{2}$,NE=$\sqrt{3}$EB=$\frac{\sqrt{3}}{2}$,
∵NE∥OQ1
∴$\frac{NE}{O{Q}_{1}}=\frac{AE}{AO}$,
∴$\frac{\frac{\sqrt{3}}{2}}{O{Q}_{1}}=\frac{\frac{5}{2}}{4}$,
∴OQ1=$\frac{4\sqrt{3}}{5}$,
∵BM=BG,∠MBG=60°,
∴△MBG是等边三角形,
∴MG=BM=AG,
∴∠AMB=90°,∠MAB=30°,
在RT△AOQ2中,∵AO=4,∠OAQ2=30°,
∴OQ2=$\frac{\sqrt{3}}{3}$OA=$\frac{4\sqrt{3}}{3}$,
∴Q1Q2=OQ2-OQ1=$\frac{8\sqrt{3}}{15}$.
故选B.

点评 本题考查轨迹的有关知识、直角三角形30度角的性质、平行线分线段成比例定理等知识,解轨迹题目的关键是找到起始点和终点的位置,确定轨迹的图形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网