题目内容

已知
a+b
11
=
b+c
10
=
c+a
15
,求
b+c-a
a+b+c
的值.
考点:代数式求值
专题:
分析:
a+b
11
=
b+c
10
=
c+a
15
=k,则可得一个关于a、b、c的三元一次方程组,求解代入代数式即可求值.
解答:解:令
a+b
11
=
b+c
10
=
c+a
15
=k,则
a+b=11k①
b+c=10k②
c+a=15k③

①+②+③可得:a+b+c=18k④
④-①得c=7k,
④-②得a=8k,
④-③得b=3k,
所以
b+c-a
a+b+c
=
3k+7k-8k
18k
=
2k
18k
=
1
9
点评:本题主要考查参数法求代数式的值,用一个参数表示出a、b、c的值是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网