题目内容
3.在5瓶饮料中,有2瓶已过了保质期,随机地从这5瓶饮料中取2瓶,收到至少有1瓶过保质期的饮料的概率为$\frac{7}{10}$.分析 用A、A、A表示没过保质期的饮料,B、B表示过期的饮料,先画树状图展示所有20种等可能的结果数,再找出至少有1瓶过保质期的饮料的结果数,然后根据概率公式求解.
解答 解:用A、A、A表示没过保质期的饮料,B、B表示过期的饮料,
画树状图为:![]()
共有20种等可能的结果数,其中至少有1瓶过保质期的饮料的结果数为14种,
所以取2瓶,收到至少有1瓶过保质期的饮料的概率=$\frac{14}{20}$=$\frac{7}{10}$.
故答案为$\frac{7}{10}$.
点评 本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
练习册系列答案
相关题目
18.设直线kx+(k+1)y-1=0(k为正整数)与两坐标轴所围成的三角形面积为Sk,k=1,2,…,2004,那么(S1+S2+…+S2004)等于( )
| A. | $\frac{1001}{2004}$ | B. | $\frac{1001}{1002}$ | C. | $\frac{2004}{2005}$ | D. | $\frac{1002}{2005}$ |
8.△ABC中,点D在边BC上,已知AB=AD=2,AC=4,且BD:DC=2:3,则△ABC是( )
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 无法确定 |
15.
在“春季经贸洽谈会”上,我市某服装厂接到生产一批出口服装的订单,要求必须在12天(含12天)内保质保量完成,且当天加工的服装当天立即空运走.为了加快进度,车间采取工人轮流休息,机器满负荷运转的生产方式,生产效率得到了提高.这样每天生产的服装数量y(套)与时间x(元)的关系如表:
由于机器损耗等原因,当每天生产的服装数达到一定量后,平均每套服装的成本会随着服装产量的增加而增大,这样平均每套服装的成本z(元)与生产时间x(天)的关系如图所示.
(1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.
(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?
(3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?
| 时间x(天) | 1 | 2 | 3 | 4 | … |
| 每天产量y(套) | 22 | 24 | 26 | 28 | … |
(1)判断每天生产的服装的数量y(套)与生产时间x(元)之间是我们学过的哪种函数关系?并验证.
(2)已知这批外贸服装的订购价格为每套1570元,设车间每天的利润为w(元).求w(元)与x(天)之间的函数关系式,并求出哪一天该生产车间获得最高利润,最高利润是多少元?
(3)从第6天起,该厂决定该车间每销售一套服装就捐a元给山区的留守儿童作为建图书室的基金,但必须保证每天扣除捐款后的利润随时间的增大而增大.求a的最大值,此时留守儿童共得多少元基金?