题目内容
2.分析 根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.
解答 解:∵AB是⊙O切线,
∴AB⊥OB,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=90°-∠A=60°,
∴∠BOC=120°,
∴$\widehat{BC}$的长为$\frac{120π•2}{180}$=$\frac{4π}{3}$.
故答案为$\frac{4π}{3}$.
点评 本题考查切线的性质、弧长公式、直角三角形两锐角互余等知识,解题的关键是记住弧长公式,求出圆心角是关键,属于中考常考题型.
练习册系列答案
相关题目
13.
如图,AB是⊙O的一条弦,直径CD⊥AB于点E.若AB=24,OE=5,则⊙O的半径为( )
| A. | 15 | B. | 13 | C. | 12 | D. | 10 |
17.
如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于( )
| A. | 1:$\sqrt{2}$ | B. | 1:$\sqrt{3}$ | C. | 1:2 | D. | 2:3 |
7.
如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为( )
| A. | $\frac{2\sqrt{2}}{5}$ | B. | $\frac{9\sqrt{2}}{20}$ | C. | $\frac{3\sqrt{2}}{4}$ | D. | $\frac{4\sqrt{2}}{5}$ |
14.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:
(1)将表中空格处的数据补全,完成上面的频数、频率分布表;
(2)请在给出的平面直角坐标系中画出相应的频数直方图;
(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?
| 组别 | 分组 | 频数(人数) | 频率 |
| 1 | 10≤t<30 | 0.16 | |
| 2 | 30≤t<50 | 20 | |
| 3 | 50≤t<70 | 0.28 | |
| 4 | 70≤t<90 | 6 | |
| 5 | 90≤t<110 |
(2)请在给出的平面直角坐标系中画出相应的频数直方图;
(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?
11.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{12}$ |