题目内容
19.(1)原点O和点C的距离与点B和表示2的点的距离的大小关系如何?
(2)设点C表示的数为x,求$\frac{2\sqrt{2}}{x-2}$-x的值.
分析 (1)首先根据已知条件可以确定线段AB的长度,然后根据对称的性质即可确定原点O和点C的距离,再根据两点间的距离公式得到点B和表示2的点的距离,再比较大小即可求解;
(2)首先根据点O和点C的距离可得点C表示的数x的值,代入所求代数式计算即可解决问题.
解答 解:(1)∵A,B两点表示的数分别为1,$\sqrt{2}$,
∴原点O和点C的距离是1-($\sqrt{2}$-1)=2-$\sqrt{2}$,
∵点B和表示2的点的距离是2-$\sqrt{2}$,
∴原点O和点C的距离与点B和表示2的点的距离相等;
(2)C点所表示的数x=2-$\sqrt{2}$,
$\frac{2\sqrt{2}}{x-2}$-x=$\frac{2\sqrt{2}}{2-\sqrt{2}-2}$-(2-$\sqrt{2}$)=-2-2+$\sqrt{2}$=$\sqrt{2}$-4.
点评 此题主要考查了实数与数轴之间的对应关系,解题时要求能够熟练计算数轴上两点间的距离;根据绝对值的性质进行化简去掉绝对值及掌握分母有理化的方法.
练习册系列答案
相关题目
7.
某商店今年1-6月份经营A、B两种电子产品,已知A产品每个月的销售数量y(件)与月份x(1≤x≤6且x为整数)之间的关系如表:
A产品每个月的售价z(元)与月份x之间的函数关系式为:z=10x;已知B产品每个月的销售数量m(件)与月份x之间的关系为:m=-2x+62,B产品每个月的售价n(元)与月份x之间存在如图所示的变化趋势;
(1)请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y与x的函数关系式;
(2)请观察如图所示的变化趋势,求出n与x的函数关系式;
(3)求出商店1-6月份经营A、B两种电子产品的销售总额w与月份x之间的函数关系式;
(4)今年7月份,商店调整了A、B两种电子产品的价格,A产品价格在6月份基础上增加a%,B产品价格在6月份基础上减少a%,结果7月份A产品的销售数量比6月份减少2a%,B产品的销售数量比6月份增加2a%.若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a的值.
(参考数据:6.32=39.69,6.42=40.91,6.52=42.25,6.62=43.56)
| x | 1 | 2 | 3 | 4 | 5 | 6 |
| y | 600 | 300 | 200 | 150 | 120 | 100 |
(1)请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y与x的函数关系式;
(2)请观察如图所示的变化趋势,求出n与x的函数关系式;
(3)求出商店1-6月份经营A、B两种电子产品的销售总额w与月份x之间的函数关系式;
(4)今年7月份,商店调整了A、B两种电子产品的价格,A产品价格在6月份基础上增加a%,B产品价格在6月份基础上减少a%,结果7月份A产品的销售数量比6月份减少2a%,B产品的销售数量比6月份增加2a%.若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a的值.
(参考数据:6.32=39.69,6.42=40.91,6.52=42.25,6.62=43.56)