题目内容

1.如图,点D在BC上,∠1=∠2,AE=AC,下面三个条件:①AB=AD;②BC=DE;③∠E=∠C,请你从所给条件①②③中选一个条件,使△ABC≌△ADE,并证明两三角形全等.

分析 根据∠1=∠2结合三角形内角和定理可得∠E=∠C,再有条件AE=AC,添加BC=DE可利用SAS定理判定△ABC≌△ADE.

解答 解:选②BC=DE,
∵∠1=∠2,∠3=∠4,
∴∠E=∠C,
在△ADE和△ABC中,$\left\{\begin{array}{l}{AE=AC}\\{∠E=∠C}\\{DE=BC}\end{array}\right.$,
∴△ABC≌△ADE(SAS).

点评 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网