题目内容
1.分析 根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.
解答 解:∵四边形ABCD为正方形,△CDE为等边三角形,
∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°,
∴∠ADE=150°.
∵AD=DE,
∴∠DAE=∠DEA=15°,
∴∠AFB=∠ADF+∠DAF=45°+15°=60°.
故答案为60°.
点评 本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.
练习册系列答案
相关题目
9.下列方程中,是关于x的一元二次方程的是( )
| A. | (x+1)2=2(x+1) | B. | $\frac{1}{{x}^{2}}$+$\frac{1}{x}$-2=0 | C. | ax2+bx+c=0 | D. | x2-2x=x2 |