题目内容

如图,半径为3的扇形OAB的面积为2π,则⊙O的圆周角∠ACB=
 
考点:扇形面积的计算,圆周角定理
专题:
分析:根据扇形面积公式求出∠AOB度数,根据圆周角定理求出即可.
解答:解:设∠AOB=x°
∵半径为3的扇形OAB的面积为2π,
xπ•32
360
=2π,
解得:x=80,
即∠AOB=80°,
∴∠ACB=
1
2
∠AOB=40°,
故答案为:40°.
点评:本题考查了扇形面积公式和圆周角定理的应用,注意:在同圆和等圆中,圆周角等于它所夹弧所对的圆心角的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网