题目内容

20.如图,在?ABCD中,点E、F分别是AD、BC边的中点,求证:BE∥DF.

分析 由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,又由点E、F分别是?ABCD边AD、BC的中点,可得DE=BF,继而证得四边形BFDE是平行四边形,即可证得结论.

解答 证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E、F分别是?ABCD边AD、BC的中点,
∴DE=$\frac{1}{2}$AD,BF=$\frac{1}{2}$BC,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE∥DF.

点评 此题考查了平行四边形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网