题目内容

14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得到了下面五条信息:
①abc>0
②2a-3b=0
③b2-4ac>0
④a+b+c>0
⑤4b<c
则其中结论正确的个数是(  )
A.2个B.3个C.4个D.5个

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:①因为函数图象与y轴的交点在y轴的负半轴可知,c<0,
由函数图象开口向上可知,a>0,由①知,c<0,
由函数的对称轴在x的正半轴上可知,x=-$\frac{b}{2a}$>0,故b<0,故abc>0;故此选项正确;
②因为函数的对称轴为x=-$\frac{b}{2a}$=$\frac{1}{3}$,故2a=-3b,即2a+3b=0;故此选项错误;
③因为图象和x轴有两个交点,所以b2-4ac>0,故此选项正确;
④把x=1代入y=ax2+bx+c得:a+b+c<0,故此选项错误;
⑤当x=2时,y=4a+2b+c=2×(-3b)+2b+c=c-4b,
而点(2,c-4b)在第一象限,
∴⑤c-4b>0,故此选项正确;
其中正确信息的有①③⑤,
故选B.

点评 此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网