题目内容
考点:面积及等积变换
专题:计算题
分析:设BQ=a,CQ=b,S△AMP=S1,S△PBN=S2,S△ABC=S,根据平行四边形的性质得PM∥BQ,PQ∥AC,根据相似比和平行线分线段成比例定理得到
=
=
,
=
=
,易得PM=
,再根据三角形的面积公式得到
=
=
,同理可得
=
,然后计算
=
,根据平行四边形的性质得PR=CQ,CR=PQ,于是得到
=
,然后利用△BPQ∽△BAC得到
=
=
,所以
=
•
=
,于是易得S3=S1+S2=41.
| PA |
| AB |
| PM |
| BQ |
| PM |
| a |
| PA |
| AB |
| CQ |
| BC |
| b |
| a+b |
| ab |
| a+b |
| S1 |
| S |
| ||
|
| ab2 |
| (a+b)3 |
| S2 |
| S |
| a2b |
| (a+b)3 |
| S3 |
| S |
| ||
|
| S3 |
| S |
| PQ•b |
| (a+b)•CA |
| PQ |
| CA |
| BQ |
| BC |
| a |
| a+b |
| S3 |
| S |
| b |
| a+b |
| a |
| a+b |
| ab |
| (a+b)2 |
解答:
解:设BQ=a,CQ=b,S△AMP=S1,S△PBN=S2,S△ABC=S,
∵四边形PQCR为平行四边形,
∴PM∥BQ,PQ∥AC,
∴
=
=
,
=
=
,
∴
=
,即PM=
,
∴
=
,
∵PM∥BQ,
∴∠APM=∠ABC,
∴
=
•
•
=
,
同理可得
=
,
∵
=
,
∵四边形PQCR为平行四边形,
∴PR=CQ,CR=PQ,
∴
=
,
∵PQ∥AC,
∴△BPQ∽△BAC,
∴
=
=
,
∴
=
•
=
,
∴
+
=
=
+
=
=
=
,
∴S3=S1+S2=25+16=41.
故答案为41.
∵四边形PQCR为平行四边形,
∴PM∥BQ,PQ∥AC,
∴
| PA |
| AB |
| PM |
| BQ |
| PM |
| a |
| PA |
| AB |
| CQ |
| BC |
| b |
| a+b |
∴
| PM |
| a |
| b |
| a+b |
| ab |
| a+b |
∴
| S1 |
| S |
| ||
|
∵PM∥BQ,
∴∠APM=∠ABC,
∴
| S1 |
| S |
| b |
| a+b |
| ab |
| a+b |
| 1 |
| a+b |
| ab2 |
| (a+b)3 |
同理可得
| S2 |
| S |
| a2b |
| (a+b)3 |
∵
| S3 |
| S |
| ||
|
∵四边形PQCR为平行四边形,
∴PR=CQ,CR=PQ,
∴
| S3 |
| S |
| PQ•b |
| (a+b)•CA |
∵PQ∥AC,
∴△BPQ∽△BAC,
∴
| PQ |
| CA |
| BQ |
| BC |
| a |
| a+b |
∴
| S3 |
| S |
| b |
| a+b |
| a |
| a+b |
| ab |
| (a+b)2 |
∴
| S1 |
| S |
| S2 |
| S |
| S1 |
| S |
| ab2 |
| (a+b)3 |
| a2b |
| (a+b)3 |
| ab(a+b) |
| (a+b)3 |
| ab |
| (a+b)2 |
| S3 |
| S |
∴S3=S1+S2=25+16=41.
故答案为41.
点评:本题考查了面积及等积变换:掌握三角形面积公式和平行线四边形的性质,熟练运用平行线分线段成比例定理和相似比进行线段的计算.
练习册系列答案
相关题目
| A、∠ABC=∠BAD |
| B、∠ACB=∠BDA |
| C、AC=BD |
| D、BC=AD |