题目内容

10.有3张扑克牌,分别是红桃3,红桃4和黑桃5,把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.请回答下列问题:
(1)先后两次抽得的数字分别记为s和t,求|s-t|≥1的概率;
(2)甲、乙两人作游戏,现有两张方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜率更高?(请用树状图或列表法解问题2)

分析 (1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)分别求得两个方案中甲获胜的概率,比较其大小,哪个大则甲选择哪种方案好.

解答 解:(1)列表如下:

 红桃3红桃4黑桃5
红桃3(红3,红3)(红3,红4)(红3,黑5)
红桃4(红4,红3)(红4,红4)(红4,黑5)
黑桃5(黑5,红3)(黑5,红4)(黑5,黑5)
∴一共有9种等可能的结果,|s-t|≥l的有(3,4),(3,5),(4,3),(4,5),(5,3),(5,4)共6种,
∴|s-t|≥l的概率为:$\frac{6}{9}$=$\frac{2}{3}$;

(2)列表得:
 红桃3红桃4黑桃5
红桃3(红3,红3)(红3,红4)(红3,黑5)
红桃4(红4,红3)(红4,红4)(红4,黑5)
黑桃5(黑5,红3)(黑5,红4)(黑5,黑5)
∵两次抽得相同花色的有5种,两次抽得数字和为奇数有4种,
A方案:P(甲胜)=$\frac{5}{9}$;
B方案:P(甲胜)=$\frac{4}{9}$;
∴甲选择A方案胜率更高.

点评 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网