题目内容
(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.
考点:正方形的判定,矩形的判定
专题:
分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;
(2)根据AO=CO,EO=FO可得四边形AECF平行四边形,再证明∠ECF=90°利用矩形的判定得出即可;
(3)利用正方形的性质得出AC⊥EN,再利用平行线的性质得出∠BCA=90°,即可得出答案.
(2)根据AO=CO,EO=FO可得四边形AECF平行四边形,再证明∠ECF=90°利用矩形的判定得出即可;
(3)利用正方形的性质得出AC⊥EN,再利用平行线的性质得出∠BCA=90°,即可得出答案.
解答:
证明:(1)∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.
证明:当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
(3)△ABC是直角三角形,
理由:∵四边形AECF是正方形,
∴AC⊥EN,故∠AOM=90°,
∵MN∥BC,
∴∠BCA=∠AOM,
∴∠BCA=90°,
∴△ABC是直角三角形.
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.
证明:当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
(3)△ABC是直角三角形,
理由:∵四边形AECF是正方形,
∴AC⊥EN,故∠AOM=90°,
∵MN∥BC,
∴∠BCA=∠AOM,
∴∠BCA=90°,
∴△ABC是直角三角形.
点评:此题主要考查了矩形和正方形的性质,关键是掌握矩形的定义:有一个角是直角的平行四边形是矩形.
练习册系列答案
相关题目
不能用尺规作出唯一三角形的是( )
| A、已知两角和夹边 |
| B、已知两边和夹角 |
| C、已知两角和其中一角的对边 |
| D、已知两边和其中一边的对角 |