题目内容

13.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:
x-2-1012
y-11-21-2-11
由表格的数据判断b2-4ac>0(填>,<或=)

分析 利用表格的对应值可判断抛物线的顶点坐标为(0,1),开口向下,于是得到抛物线与x轴有两个交点,然后利用△=b2-4ac决定抛物线与x轴的交点个数可b2-4ac的符号.

解答 解:由表格数据得抛物线过点(-1,-2),(0,1),(1,-2),
所以抛物线的顶点坐标为(0,1),开口向下,
所以抛物线与x轴有两个交点,
所以△=b2-4ac>0.
故答案为>.

点评 本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网