题目内容

5.若方程组$\left\{\begin{array}{l}{{x}^{2}+xy+{9y}^{2}=1}\\{x-3y=k}\end{array}\right.$有实数解,求实数k的取值范围.

分析 先把方程组转化成二元一次方程,根据根的判别式得出△≥0,求出不等式的解集即可.

解答 解:$\left\{\begin{array}{l}{{x}^{2}+xy+9{y}^{2}=1①}\\{x-3y=k②}\end{array}\right.$
由②得:x=k+3y,③
把③代入②得:(k+3y)2+(k+3y)y+9y2=1,
即21y2+7ky+k2-1=0,
∵方程组$\left\{\begin{array}{l}{{x}^{2}+xy+{9y}^{2}=1}\\{x-3y=k}\end{array}\right.$有实数解,
∴△=(7k)2-4×21×(k2-1)≥0,
解得:-$\frac{2\sqrt{15}}{2}$≤k≤$\frac{2\sqrt{15}}{5}$,
即实数k的取值范围是-$\frac{2\sqrt{15}}{2}$≤k≤$\frac{2\sqrt{15}}{5}$.

点评 本题考查了高次方程,根的判别式的应用,能得出不等式是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网