题目内容

如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2-7x+12=0的两个根(OA>OB).
(1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
考点:一次函数综合题,全等三角形的判定与性质,等腰直角三角形,正方形的性质
专题:压轴题
分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
解答:解:(1)x2-7x+12=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
过D作DE⊥y于点E,
∵正方形ABCD,
∴AD=AB,∠DAB=90°,
∠DAE+∠OAB=90°,
∠ABO+∠OAB=90°,
∴∠ABO=∠DAE,
∵DE⊥AE,
∴∠AED=90°=∠AOB,
在△DAE和△ABO中,
∠ABO=∠DAE
∠AED=∠AOB=90°
AB=AD

∴△DAE≌△ABO(AAS),
∴DE=OA=4,AE=OB=3,
∴OE=7,
∴D(4,7);

(2)过点C作CM⊥x轴于点M,
同上可证得△BCM≌△ABO,
∴CM=OB=3,BM=OA=4,
∴OM=7,
∴C(7,3),
设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
代入B(3,0),C(7,3)得,
7k+b=3
3k+b=0

解得
k=
3
4
b=-
9
4

∴y=
3
4
x-
9
4


(3)存在,如图,
点P与点B重合时,P1(3,0),
点P与点B关于点C对称时,P2(11,6).
点评:本题是一次函数综合题型,主要利用了解一元二次方程,正方形的性质,全等三角形的判定与性质,待定系数法求一次函数解析式,等腰直角三角形的判定与性质,(1)作辅助线构造出全等三角形是解题的关键,也是本题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网