题目内容
已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为( )
| A、2cm | B、8cm |
| C、2cm或8cm | D、10cm |
考点:等腰三角形的性质
专题:
分析:作出图形,根据三角形的中线的定义可得AD=CD,然后求出两三角形的周长的差等于腰长与底边的差,然后分情况讨论求解即可.
解答:
解:如图,∵BD是△ABC的中线,
∴AD=CD,
∴两三角形的周长的差等于腰长与底边的差,
∵BC=5cm,
∴AB-5=3或5-AB=3,
解得AB=8或AB=2,
若AB=8,则三角形的三边分别为8cm、8cm、5cm,
能组成三角形,
若AB=2,则三角形的三边分别为2cm、2cm、5cm,
∵2+2=4<5,
∴不能组成三角形,
综上所述,三角形的腰长为8cm.
故选B.
∴AD=CD,
∴两三角形的周长的差等于腰长与底边的差,
∵BC=5cm,
∴AB-5=3或5-AB=3,
解得AB=8或AB=2,
若AB=8,则三角形的三边分别为8cm、8cm、5cm,
能组成三角形,
若AB=2,则三角形的三边分别为2cm、2cm、5cm,
∵2+2=4<5,
∴不能组成三角形,
综上所述,三角形的腰长为8cm.
故选B.
点评:本题考查了等腰三角形的性质,三角形的中线,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.
练习册系列答案
相关题目
若实数a<1,则实数M=a,N=
,P=
的大小关系为( )
| a+2 |
| 3 |
| 2a+1 |
| 3 |
| A、P>N>M |
| B、M>N>P |
| C、N>P>M |
| D、M>P>N |