题目内容

12.已知:如图,在△ABC中,AB=AC=13,BC=24,点P、D分别在边BC、AC上,AP2=AD•AB,求∠APD的正弦值.

分析 由AP2=AD•AB,AB=AC,可证得△ADP∽△APC,由相似三角形的性质得到∠APD=∠ACB=∠ABC,作AE⊥BC于E,根据等腰三角形的性质可求得AE,由三角函数的定义可得结论,

解答 解:∵AP2=AD•AB,AB=AC,
∴AP2=AD•AC,
$\frac{AP}{AC}=\frac{AD}{AP}$,
∵∠PAD=∠CAP,
∴△ADP∽△APC,
∴∠APD=∠ACB=∠ABC,
作AE⊥BC于E,
∵AB=AC,
∴BE=CE=$\frac{1}{2}$×24=12,
∴AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=5
∴sin∠APD=sin∠ABC=$\frac{5}{13}$,

点评 本题考查了相似三角形的判定和性质,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网