题目内容

10.观察下列等式:
1+2+3+4+…+n=$\frac{1}{2}$n(n+1);
1+3+6+10+…+$\frac{1}{2}$n(n+1)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+20+…+$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{24}$n(n+1)(n+2)(n+3);
则有:1+5+15+35+…$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4).

分析 根据已知等式发现分母依次乘以2、乘以3、乘以4,据此作答即可.

解答 解:∵1+2+3+4+…+n=$\frac{1}{1×2}$n(n+1)=$\frac{1}{2}$n(n+1);
1+3+6+10+…+$\frac{1}{2}$n(n+1)=$\frac{1}{2×3}$n(n+1)(n+2)=$\frac{1}{6}$n(n+1)(n+2);
1+4+10+20+…+$\frac{1}{6}$n(n+1)(n+2)=$\frac{1}{6×4}$n(n+1)(n+2)(n+3)=$\frac{1}{24}$n(n+1)(n+2)(n+3),
∴1+5+15+35+…$\frac{1}{24}$n(n+1)(n+2)(n+3)=$\frac{1}{24×5}$n(n+1)(n+2)(n+3)(n+4)=$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4),
故答案为:$\frac{1}{120}$n(n+1)(n+2)(n+3)(n+4).

点评 本题主要考查数字的变化规律,由已知等式发现变化部分的变化规律及不变的部分是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网