题目内容
14.(1)已知∠ACD=a,求∠AOC的大小;
(2)求证:AC2=AB•AD.
分析 (1)由CD是⊙O的切线得到∠OCD=90°,即∠ACD+∠ACO=90°,利用OC=OA得到∠ACO=∠CAO,然后利用三角形的内角和即可证明题目的结论;
(2)如图,连接BC.由AB是直径得到∠ACB=90°,然后利用已知条件可以证明在Rt△ACD∽Rt△ABC,接着利用相似三角形的性质即可解决问题.
解答
证明:(1)∵CD是⊙O的切线,
∴∠OCD=90°,
即∠ACD+∠ACO=90°,①
∵OC=OA,
∴∠ACO=∠CAO,
∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,
两边除以2得:$\frac{1}{2}$∠AOC+∠ACO=90°,②
由①,②,得:∠ACD-$\frac{1}{2}$∠AOC=0,
即∠AOC=2∠ACD=2α;
(2)如图,连接BC.
∵AB是直径,
∴∠ACB=90°,
在Rt△ACD与Rt△ABC中,
∵∠AOC=2∠B,
∴∠B=∠ACD,
∴Rt△ACD∽Rt△ABC,
∴$\frac{AC}{AB}=\frac{AD}{AC}$,即AC2=AB•AD,
点评 本题考查了圆的切线性质,及相似三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关题目
6.
如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD与直线AB交于点P,则sin∠ADP的值为( )
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
3.$-\frac{3}{4}$的倒数是( )
| A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
4.在某次体育测试中,九(一)班五位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,则这组数据的中位数是( )
| A. | 1.71 | B. | 1.85 | C. | 1.90 | D. | 2.10 |