题目内容

6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD与直线AB交于点P,则sin∠ADP的值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

分析 连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.

解答 解:连接BD,
∵∠DAB=180°-∠C=60°,
∵AB是直径,
∴∠ADB=90°,
∴∠ABD=90°-∠DAB=30°,
∵PD是切线,
∴∠ADP=∠ABD=30°,
∴sin∠ADP=$\frac{1}{2}$,
故选:D.

点评 本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网