题目内容

如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

(1)见解析;(2)见解析. 【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO; (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论. 试题解析: 证明:(1)选取①②, ...
练习册系列答案
相关题目

为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.

(1)求乙、丙两种树每棵各多少元?

(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?

(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?

(1)200元,200元,(2)能购买甲种树600棵,乙种树300棵,丙种树100棵;(3)丙种树最多可以购买201棵. 【解析】 试题分析:(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数; (2)假设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三...

如图,在?ABCD中,点E,F在对角线AC上,且AE=CF.求证:

(1)DE=BF;

(2)四边形DEBF是平行四边形.

详见解析. 【解析】 试题分析:(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AD∥CB,AD=CB, ∴∠DAE=∠BCF, 在△ADE和△CBF中, ∴△AD...

如图,?ABCD的对角线AC,BD相交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为(   )

A. 13 B. 17 C. 20 D. 26

B 【解析】试题分析:由平行四边形的性质得出OA=OC=3,OB=OD=6,BC=AD=8,即可求出△OBC的周长. 【解析】 ∵四边形ABCD是平行四边形, ∴OA=OC=3,OB=OD=6,BC=AD=8, ∴△OBC的周长=OB+OC+AD=3+6+8=17. 故选:B.

在下列条件中,能够判定一个四边形是平行四边形的是(  )

A. 一组对边平行,另一组对边相等

B. 一组对边相等,一组对角相等

C. 一组对边平行,一条对角线平分另一条对角线

D. 一组对边相等,一条对角线平分另一条对角线

C 【解析】A、错误.这个四边形有可能是等腰梯形. B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形. D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行. 故选C.

如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=___.

3. 【解析】试题分析:连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,又CD=BD,可得MN=CD,又由MN∥BC,可得四边形DCMN是平行四边形,所以DN=CM,根据直角三角形的性质得到CM=AB=3,即可得DN=3.

如图,?ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是(  )

A. 10 B. 14 C. 20 D. 22

B 【解析】试题分析:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选B.

已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.

(1)求证:△ABF≌△CDE;

(2)如图,若∠1=65°,求∠B的大小.

(1)证明见解析;(2)50°. 【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AD∥BC,∠B=∠D, ∴∠1=∠DCE...

抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形. 【解析】试题分析:(1)将点A、B的坐标代入抛物线的解析式,得到关于b、c的二元一次方程组,从而可解得b、c的值; (2)过点B′作B′E⊥x轴于E,BB′与OC交于点F.由平行于y轴的直线上各点横坐标相同可知点C的横坐标为2,将x=2代入直线y=﹣2x的解析式可求得点C的坐...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网