题目内容

如图,△ABC内接与⊙O,∠OCB=40°,则∠A=
 
考点:圆周角定理
专题:
分析:连接OB,在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数.
解答:解:连接OB,
在△OCB中,OB=OC(⊙O的半径),
∴∠OBC=∠0CB(等边对等角);
∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,
∴∠COB=100°;
又∵∠A=
1
2
∠C0B(同弧所对的圆周角是所对的圆心角的一半),
∴∠A=50°,
故答案为50°.
点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网