题目内容
2.(1)若∠ECD=60°,求∠AFC的度数;
(2)若∠ECD=∠BAF,试判断∠ABD与∠BDC之间的数量关系,并说明理由.
分析 (1)根据已知条件得到∠BMF=∠BNC,由平行线的判定定理得到AF∥CE,根据平行线的性质得到∠AFC+∠ECD=180°,即可得到结论;
(2)由∠AFC+∠ECD=180°,由于∠ECD=∠BAF,等量代换得到∠BAF+∠AFC=180°,推出AB∥CD,根据平行线的性质即可得到结论.
解答 解:(1)∵∠AMD=∠BNC,
∵∠AMD=∠BMF,
∴∠BMF=∠BNC,
∴AF∥CE,
∴∠AFC+∠ECD=180°,
∵∠ECD=60°,
∴∠AFC=120°;
(2)∵∠AFC+∠ECD=180°,
∵∠ECD=∠BAF,
∴∠BAF+∠AFC=180°,
∴AB∥CD,
∴∠ABD=∠BDC.
点评 本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.
练习册系列答案
相关题目
11.若(x+4)(x-2)=x2+mx+m,则m、n的值分别是( )
| A. | 2,8 | B. | -2,-8 | C. | -2,8 | D. | 2,-8 |