题目内容

矩形较短的边长为12cm,两条对角线的夹角为60°,则对角线的长为
 
考点:矩形的性质
专题:
分析:据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.
解答:解:如图:AB=12cm,∠AOB=60°.
∵四边形是矩形,AC,BD是对角线.
∴OA=OB=OD=OC=
1
2
BD=
1
2
AC.
在△AOB中,OA=OB,∠AOB=60°.
∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.
故答案为:24cm.
点评:本题考查了矩形的性质,矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网