题目内容
考点:相似三角形的判定与性质,圆内接四边形的性质
专题:证明题
分析:连接PD,AS,RC,BR,AP,SD.由△EBR∽△EPA,△FDS∽△FPA,知
=
,
=
,则
=
①;又由△ECR∽△EPD,△FPD∽△FAS,知
=
,
=
,则
=
②;由①,②得
=
.故
•
•
=
•
•
③,对△EAD应用梅涅劳斯定理,有
•
•
=1④由③,④得
•
•
=1.由此得到结论.
| BR |
| PA |
| EB |
| EP |
| PA |
| DS |
| FP |
| FD |
| BR |
| DS |
| EB•FP |
| EP•FD |
| CR |
| PD |
| EC |
| EP |
| PD |
| AS |
| FP |
| FA |
| CR |
| AS |
| EC•FP |
| EP•FA |
| BR•AS |
| DS•CR |
| EB•FA |
| EC•FD |
| BR |
| RC |
| CD |
| DS |
| SA |
| AB |
| EB |
| BA |
| AF |
| FD |
| DC |
| CE |
| EB |
| BA |
| AF |
| FD |
| DC |
| CE |
| BR |
| RC |
| CD |
| DS |
| SA |
| AB |
解答:
证明:如图,
连接PD,AS,RC,BR,AP,SD.
由△EBR∽△EPA,△FDS∽△FPA,知
=
,
=
.
两式相乘,得
=
①,
又由△ECR∽△EPD,△FPD∽△FAS,知
=
,
=
.两式相乘,得
=
②,
由①,②得
=
.故
•
•
=
•
•
③,
对△EAD应用梅涅劳斯定理,有
•
•
=1④
由③,④得
•
•
=1.
∴BD,RS,AC交于一点,
所以R,T,S三点共线.
连接PD,AS,RC,BR,AP,SD.
由△EBR∽△EPA,△FDS∽△FPA,知
| BR |
| PA |
| EB |
| EP |
| PA |
| DS |
| FP |
| FD |
两式相乘,得
| BR |
| DS |
| EB•FP |
| EP•FD |
又由△ECR∽△EPD,△FPD∽△FAS,知
| CR |
| PD |
| EC |
| EP |
| PD |
| AS |
| FP |
| FA |
| CR |
| AS |
| EC•FP |
| EP•FA |
由①,②得
| BR•AS |
| DS•CR |
| EB•FA |
| EC•FD |
| BR |
| RC |
| CD |
| DS |
| SA |
| AB |
| EB |
| BA |
| AF |
| FD |
| DC |
| CE |
对△EAD应用梅涅劳斯定理,有
| EB |
| BA |
| AF |
| FD |
| DC |
| CE |
由③,④得
| BR |
| RC |
| CD |
| DS |
| SA |
| AB |
∴BD,RS,AC交于一点,
所以R,T,S三点共线.
点评:本题考查了三角形相似的判定与性质:有两个角对应相等的两个三角形相似;相似三角形的对应边的比相等.也考查了梅涅劳斯定理及其引理以及比例的性质.
练习册系列答案
相关题目
若k=
=
=
(a+b+c≠0),则k的值为( )
| 2a+b |
| c |
| 2c+a |
| b |
| 2b+c |
| a |
| A、1 | B、2 | C、3 | D、非上述答案 |