题目内容

二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.

(1)写出方程ax2+bx+c=0的两个根;

(2)写出不等式ax2+bx+c>0的解集;

(3)写出y随x的增大而减小的自变量x的取值范围;

(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

(1)x=1或x=3是方程ax2+bx+c=0的两个根;(2)l<x<3;(3)当x>2时,y随x的增大而减小;(4)k<2. 【解析】试题分析:(1)观察图形可以看出抛物线与x轴交于(1,0)和(3,0),即可解题 (2)根据抛物线y=ax2+bx+c,求得y>0的x取值范围即可解题; (3)图中可以看出抛物线对称轴,即可解题; (3)易求得抛物线解析式,根据方程△>0即...
练习册系列答案
相关题目

△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE、CD交于点F,则共有等腰三角形( )

A. 7个 B. 8个 C. 9个 D. 10个

B 【解析】∵等腰三角形有两个角相等, ∴只要能判断出有两个角相等就行了, 将原图各角标上后显示如左下: 因此,所有三角形都是等腰三角形, 只要判断出有哪几个三角形就可以了. 如右上图,三角形有如下几个: ①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个. 故选:B.

如图所示是二次函数y=的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是(  )

A. 4 B. C. 2π D. 8

B 【解析】函数与y轴交于(0,2)点,与x轴交于(-2,0)和(2,0)两点,则三点构成的三角形面积S1=4,则以半径为2的半圆的面积为S2=π××22=2π,则阴影部分的面积S有:4<S<2π.因为选项A、C、D均不在S取值范围内.故选 B

已知二次函数y=-x2+4x-3,其图象与y轴交于点B,与x轴交于A,C 两点.求△ABC的周长和面积.

C△ABC=,S△ABC=3. 【解析】试题分析:先分别求得二次函数的图象与坐标轴的交点坐标,再根据勾股定理求得△ABC的三边长,即可得到△ABC的周长,再根据三角形的面积公式即可求得结果. 令x=0,得y=-3,故B点坐标为(0,-3). 解方程-x2+4x-3=0,得x1=1,x2=3. 故A、C两点的坐标为(1,0),(3,0). 所以AC=3-1=2,AB=,...

函数的图象如图所示,则下列结论错误的是( )

A. a>0 B. b2-4ac>0

C. 的两根之和为负 D. 的两根之积为正

D 【解析】【解析】 ∵抛物线开口向上,∴a>0,故A正确. ∵抛物线与x轴有两个交点,∴b2-4ac>0,故B正确. 由图象可知, 一根为正,一根为负,且负根的绝对值大于正根的绝对值,∴两根之和为负,两根之积为负,故C正确,D错误. 故选D.

已知二次函数y=-x2+4,当-2≤x≤3时,函数的最小值是_____,最大值是____.

-5 4 【解析】试题解析:抛物线y=-x2+4,开口向下,有最大值为4,当x=3时有最小值为-5.

如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).

(1)写出y与x的函数关系式;

(2)上述函数是什么函数?

(3)自变量x的取值范围是什么?

(1) y=x2-9x+20;(2) 二次函数;(3) 0<x<4. 【解析】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式; (2)通过二次函数的定义可判断; (3)根据x取值不能大于原方程的长方形的宽进行分析. 试题解析:(1)根据长方形的面积公式,得y=(5-x)·(4-x)=x2-9x+20,所以y与x的函数关系式为y=x2-9x+20. ...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网