题目内容

20.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆⊙O,则弧AC的长等于(  )
A.πB.$\frac{\sqrt{10}π}{2}$C.$\frac{\sqrt{5}π}{4}$D.$\frac{\sqrt{5}π}{2}$

分析 根据勾股定理可计算出AB2、AC2、BC2,从而得到AB2=AC2+BC2,CA=CB,根据勾股定理的逆定理可得∠ACB=90°,再根据圆周角定理可得AB是⊙O的直径,根据CA=CB,可得弧AC的长等于弧BC的长,只需求出弧AB的长,就可解决问题.

解答 解:根据勾股定理可得:
AB2=42+22=20,AC2=32+12=10,BC2=32+12=10,
∴AB2=AC2+BC2,CA=CB,
∴∠ACB=90°,
∴AB是⊙O的直径,
∴弧AB的长=$\frac{1}{2}$×π×AB=$\frac{1}{2}$×π×2$\sqrt{5}$=$\sqrt{5}$π,
∵CA=CB,
∴弧AC的长=弧BC的长=$\frac{1}{2}$×弧AB的长=$\frac{\sqrt{5}π}{2}$.
故选D.

点评 本题以网格为背景,主要考查了弧长的计算,勾股定理及其逆定理、圆周角定理、同圆中弧与弦的关系等知识,难度不大,但考查的知识面广,是一道好题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网