ÌâÄ¿ÄÚÈÝ
12£®Ð¡Ó±²Î¼Óij¸öÖÇÁ¦¾º´ð½ÚÄ¿£¬´ð¶Ô×îºóÁ½µÀµ¥Ñ¡Ìâ¾Í˳Àûͨ¹Ø£®µÚÒ»µÀÌâÓÐ3¸öÑ¡ÏµÚ¶þµÀÌâÓÐ4¸öÑ¡ÏÕâÁ½µÀÌâСӱ¶¼²»»á£¬²»¹ýСӱ»¹ÓÐÒ»¸ö¡°ÇóÖú¡±Ã»ÓÐʹÓã¨Ê¹Óá°ÇóÖú¡±¿ÉÈÃÖ÷³ÖÈËÈ¥µôÆäÖÐÒ»ÌâÖеÄÒ»¸ö´íÎóÑ¡Ï£®£¨1£©ÈôСӱµÚÒ»µÀÌⲻʹÓá°ÇóÖú¡±£¬ÄÇôСӱ´ð¶ÔµÚÒ»µÀÌâµÄ¸ÅÂÊÊÇ$\frac{1}{3}$£»
£¨2£©ÈôСӱ½«¡°ÇóÖú¡±ÁôÔÚµÚ¶þµÀÌâʹÓã¬ÄÇôСӱ˳Àûͨ¹ØµÄ¸ÅÂÊÊǶàÉÙ£¿ËµÃ÷ÀíÓÉ£»
£¨3£©´Ó¸ÅÂʵĽǶȷÖÎö£¬Äã»á½¨ÒéСӱÔÚ´ðµÚ¼¸µÀÌâʱʹÓá°ÇóÖú¡±£¿£¨Ö±½Ó×÷´ð£¬²»±ØËµÃ÷ÀíÓÉ£©
·ÖÎö £¨1£©Ö±½ÓÀûÓøÅÂʹ«Ê½Çó½â£»
£¨2£©»Ê÷״ͼ£¨ÓÃZ±íʾÕýÈ·Ñ¡ÏC±íʾ´íÎóÑ¡ÏչʾËùÓÐ9ÖֵȿÉÄܵĽá¹ûÊý£¬ÕÒ³öСӱ˳Àûͨ¹ØµÄ½á¹ûÊý£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã³öСӱ˳Àûͨ¹ØµÄ¸ÅÂÊ£»
£¨3£©Ó루2£©·½·¨Ò»ÑùÇó³öСӱ½«¡°ÇóÖú¡±ÁôÔÚµÚÒ»µÀÌâʹÓã¬Ð¡Ó±Ë³Àûͨ¹ØµÄ¸ÅÂÊ£¬È»ºó±È½ÏÁ½¸ö¸ÅÂʵĴóС¿ÉÅжÏСӱÔÚ´ðµÚ¼¸µÀÌâʱʹÓá°ÇóÖú¡±£®
½â´ð ½â£º£¨1£©ÈôСӱµÚÒ»µÀÌⲻʹÓá°ÇóÖú¡±£¬ÄÇôСӱ´ð¶ÔµÚÒ»µÀÌâµÄ¸ÅÂÊ=$\frac{1}{3}$£»
¹Ê´ð°¸Îª$\frac{1}{3}$£»
£¨2£©ÈôСӱ½«¡°ÇóÖú¡±ÁôÔÚµÚ¶þµÀÌâʹÓã¬ÄÇôСӱ˳Àûͨ¹ØµÄ¸ÅÂÊÊÇ$\frac{1}{9}$£®ÀíÓÉÈçÏ£º
»Ê÷״ͼΪ£º£¨ÓÃZ±íʾÕýÈ·Ñ¡ÏC±íʾ´íÎóÑ¡Ï![]()
¹²ÓÐ9ÖֵȿÉÄܵĽá¹ûÊý£¬ÆäÖÐСӱ˳Àûͨ¹ØµÄ½á¹ûÊýΪ1£¬
ËùÒÔСӱ˳Àûͨ¹ØµÄ¸ÅÂÊ=$\frac{1}{9}$£»
£¨2£©ÈôСӱ½«¡°ÇóÖú¡±ÁôÔÚµÚÒ»µÀÌâʹÓ㬻Ê÷״ͼΪ£º£¨ÓÃZ±íʾÕýÈ·Ñ¡ÏC±íʾ´íÎóÑ¡Ï![]()
¹²ÓÐ8ÖֵȿÉÄܵĽá¹ûÊý£¬ÆäÖÐСӱ˳Àûͨ¹ØµÄ½á¹ûÊýΪ1£¬ËùÒÔСӱ½«¡°ÇóÖú¡±ÁôÔÚµÚÒ»µÀÌâʹÓã¬Ð¡Ó±Ë³Àûͨ¹ØµÄ¸ÅÂÊ=$\frac{1}{8}$£¬
ÓÉÓÚ$\frac{1}{8}$£¾$\frac{1}{9}$£¬
ËùÒÔ½¨ÒéСӱÔÚ´ðµÚÒ»µÀÌâʱʹÓá°ÇóÖú¡±£®
µãÆÀ ±¾Ì⿼²éÁËÁÐ±í·¨ÓëÊ÷״ͼ·¨£ºÍ¨¹ýÁÐ±í·¨»òÊ÷״ͼ·¨Õ¹Ê¾ËùÓеȿÉÄܵĽá¹ûÇó³ön£¬ÔÙ´ÓÖÐÑ¡³ö·ûºÏʼþA»òBµÄ½á¹ûÊýÄ¿m£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½Çó³öʼþA»òBµÄ¸ÅÂÊ£®
| A£® | 7£¨a+b+c-d£© | B£® | 7£¨a+b-c+d£© | C£® | 7£¨a-b+c+d£© | D£® | 7£¨b+c+d-a£© |
| A£® | 0 | B£® | -|-2| | C£® | $\sqrt{2}$ | D£® | -3 |
| A£® | ¸ÃÃüÌâΪ¼ÙÃüÌâ | B£® | ¸ÃÃüÌâÎªÕæÃüÌâ | ||
| C£® | ¸ÃÃüÌâµÄÄæÃüÌâÎªÕæÃüÌâ | D£® | ¸ÃÃüÌâûÓÐÄæÃüÌâ |
| A£® | a=$\sqrt{3}$£¬b=2£¬c=$\sqrt{7}$ | B£® | a=2£¬b=$\frac{2\sqrt{3}}{3}$£¬c=$\frac{4\sqrt{3}}{3}$ | C£® | a=$\frac{2\sqrt{3}}{3}$£¬b=2£¬c=$\frac{4\sqrt{3}}{3}$ | D£® | a=2£¬b=2£¬c=4 |