题目内容
17.解方程:(1)3x2-4x=0;
(2)4x2-6x-3=0;
(3)9(x+1)2-(x-2)2=0;
(4)2x2-3x-4=0.
分析 (1)利用因式分解法解方程;
(2)利用求根公式法解方程;
(3)利用因式分解法解方程;
(4)利用求根公式法解方程.
解答 解:(1)x(3x-4)=0,
x=0或3x-4=0,
所以x1=0,x2=$\frac{4}{3}$;
(2)△=(-6)2-4×4×(-3)=4×21,
x=$\frac{6±2\sqrt{21}}{2×4}$=$\frac{3±\sqrt{21}}{4}$,
所以x1=$\frac{3-\sqrt{21}}{4}$,x2=$\frac{3+\sqrt{21}}{4}$;
(3)[3(x+1)+(x-2)][3(x+1)-(x-2)]=0,
3(x+1)+(x-2)=0或3(x+1)-(x-2)=0,
所以x1=-$\frac{1}{4}$,x2=-$\frac{5}{2}$;
(4))△=(-3)2-4×2×(-4)=41,
x=$\frac{3±\sqrt{41}}{2×2}$,
所以x1=$\frac{3+\sqrt{41}}{4}$,x2=$\frac{3-\sqrt{41}}{4}$.
点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.
练习册系列答案
相关题目
7.方程x(x-2)=0的根为( )
| A. | 1 | B. | 0 | C. | 2 | D. | 2和0 |
8.下列各命题中,逆命题是真命题的是( )
| A. | 全等三角形的对应角相等 | |
| B. | 如果两个数相等,那么它们的绝对值相等 | |
| C. | 有理数是实数 | |
| D. | 直角三角形的两个锐角互余 |