题目内容

5.矩形的一条对角线长8cm,两条对角线的一个夹角为60°,则这个矩形的面积是(  )
A.8cm2B.8$\sqrt{3}$cm2C.16cm2D.16$\sqrt{3}$cm2

分析 根据矩形的两条对角线的夹角为60°,可以判定△AOB为等边三角形,即可求得AB=AO,在直角△ABC中,已知AC,AB,根据勾股定理即可计算BC的长,进而计算矩形的周长即可解题.

解答 解:矩形的两条对角线的夹角为:∠1=60°,
∵矩形对角线相等且互相平分,
∴△AOB为等边三角形,
∴AB=AO=$\frac{1}{2}$AC=4,
在直角△ABC中,AC=4,AB=4,
∴BC=$\sqrt{A{C}^{2}-A{B}^{2}}$=4$\sqrt{3}$,
故矩形的面积为:4×4$\sqrt{3}$=16$\sqrt{3}$.
故选D.

点评 此题主要考查了矩形对角线相等且互相平分的性质,等边三角形的判定,勾股定理在直角三角形中的运用,本题中根据勾股定理计算BC的长是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网