题目内容

8.计算$\frac{1}{{1+\sqrt{2}}}$+$\frac{1}{{\sqrt{2}+\sqrt{3}}}$+$\frac{1}{{\sqrt{3}+\sqrt{4}}}$+…+$\frac{1}{{\sqrt{2016}+\sqrt{2017}}}$的值为:$\sqrt{2017}$-1.

分析 先分母有理化,然后合并即可.

解答 解:原式=$\sqrt{2}$-1+$\sqrt{3}$-$\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{2017}$-$\sqrt{2016}$
=$\sqrt{2017}$-1.
故答案为$\sqrt{2017}$-1.

点评 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网