题目内容
4.分析 过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,再利用“HL”证明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根据全等三角形的面积相等列方程求解.
解答 解:过点D作DH⊥AC于H,![]()
∵AD是△ABC的角平分线,DF⊥AB,DH⊥AC,
∴DF=DH,
在Rt△ADF和Rt△ADH中,
$\left\{\begin{array}{l}{DF=DH}\\{AD=AD}\end{array}\right.$,
∴Rt△ADF≌Rt△ADH(HL),
∴SRt△ADF=SRt△ADH,
在Rt△DEF和Rt△DGH中,
$\left\{\begin{array}{l}{DE=DG}\\{DF=DH}\end{array}\right.$,
∴Rt△DEF≌Rt△DGH(HL),
∴SRt△DEF=SRt△DGH,
∵△ADG和△AED的面积分别为60和38,
∴38+SRt△DEF=60-SRt△DGH,
∴SRt△DEF=11,
故答案为:11.
点评 本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关题目
16.已知a+b=5,ab=3,则a2+b2=( )
| A. | 19 | B. | 28 | C. | 25 | D. | 22 |
13.下列长度的三条线段不能组成直角三角形的是( )
| A. | 5,12,13 | B. | 1,2,$\sqrt{5}$ | C. | 6,8,12 | D. | 3a,4a,5a(a>0) |