题目内容
济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?
考点:分式方程的应用,一元一次不等式组的应用
专题:工程问题
分析:(1)设乙工程队单独完成这项工作需要a天,由题意列出分式方程,求出a的值即可;
(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值.
(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值.
解答:解:(1)设乙工程队单独完成这项工作需要a天,由题意得
+36(
+
)=1,
解之得a=80,
经检验a=80是原方程的解.
答:乙工程队单独做需要80天完成;
(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,
∴
+
=1
即y=80-
x,
又∵x<46,y<52,
∴
,
解得42<x<46,
∵x、y均为正整数,
∴x=45,y=50,
答:甲队做了45天,乙队做了50天.
| 30 |
| 120 |
| 1 |
| 120 |
| 1 |
| a |
解之得a=80,
经检验a=80是原方程的解.
答:乙工程队单独做需要80天完成;
(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,
∴
| x |
| 120 |
| y |
| 80 |
即y=80-
| 2 |
| 3 |
又∵x<46,y<52,
∴
|
解得42<x<46,
∵x、y均为正整数,
∴x=45,y=50,
答:甲队做了45天,乙队做了50天.
点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.
练习册系列答案
相关题目
某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是( )
| A、甲的成绩比乙的成绩稳定 |
| B、乙的成绩比甲的成绩稳定 |
| C、甲、乙两人的成绩一样稳定 |
| D、无法确定甲、乙的成绩谁更稳定 |