题目内容

如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.
(1)求证:△CEF≌△AEF;
(2)联结DE,当BD=2CD时,求证:DE=AF.
考点:全等三角形的判定与性质,三角形中位线定理,平行四边形的判定与性质
专题:证明题
分析:(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;
(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD=2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CEFD为平行四边形,可得出DE=CF,再由CF=AF,等量代换得到DE=AF.
解答:证明:(1)∵∠ACB=90°,且E线段AB中点,
∴CE=
1
2
AB=AE,
∵∠ACD=90°,F为线段AD中点,
∴AF=CF=
1
2
AD,
在△CEF和△AEF中,
CF=AF
EF=EF
CE=AE

∴△CEF≌△AEF(SSS);
(2)连接DE,
∵点E、F分别是线段AB、AD中点,
∴EF=
1
2
BD,EF∥BC,
∵BD=2CD,
∴EF=CD.
又∵EF∥BC,
∴四边形CEFD是平行四边形,
∴DE=CF,
∵CF=AF,
∴DE=AF.
点评:此题考查了全等三角形的判定与性质,中位线定理,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网