题目内容
考点:垂径定理,圆周角定理
专题:
分析:连接OB,根据垂径定理求出弧AN=弧BN,得出圆心角相等,根据圆周角定理求出即可.
解答:解:
连接OB,
∵⊙O直径MN⊥AB于P,
∴弧AN=弧BN,
∵∠AON=50°,
∴∠BON=∠AON=50°,
∴∠BAN=
∠BON=25°,
故答案为:25°.
连接OB,
∵⊙O直径MN⊥AB于P,
∴弧AN=弧BN,
∵∠AON=50°,
∴∠BON=∠AON=50°,
∴∠BAN=
| 1 |
| 2 |
故答案为:25°.
点评:本题考查了圆周角定理,圆心角、弧、弦之间的关系,垂径定理的应用,主要考查学生运用定理进行推理的能力.
练习册系列答案
相关题目