题目内容
8.x,y为实数,且(x2+xy-3)2+(xy-2y2+6)2=0,求x与y的值.分析 利用偶次方的性质结合二元二次方程组的解法进而得出符合题意的答案.
解答 解:∵(x2+xy-3)2+(xy-2y2+6)2=0,
∴$\left\{\begin{array}{l}{{x}^{2}+xy-3=0①}\\{xy-2{y}^{2}+6=0②}\end{array}\right.$,
①×2+②得:2x2+3xy-2y2=0,
则x=-2y或y=2x,
∴4y2-2y2=3,
故y=±$\frac{\sqrt{6}}{2}$,
解得:$\left\{\begin{array}{l}{{x}_{1}=-\sqrt{6}}\\{{y}_{1}=\frac{\sqrt{6}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{2}=\sqrt{6}}\\{{y}_{2}=-\frac{\sqrt{6}}{2}}\end{array}\right.$,
或x2+3x2=3,
则x=±$\frac{\sqrt{3}}{2}$,
解得:$\left\{\begin{array}{l}{{x}_{3}=\frac{\sqrt{3}}{2}}\\{{y}_{3}=\sqrt{3}}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{4}=-\frac{\sqrt{3}}{2}}\\{{y}_{4}=-\sqrt{3}}\end{array}\right.$.
点评 此题主要考查了偶次方的性质以及二元二次方程组的解法,正确得出x,y的关系是解题关键.
练习册系列答案
相关题目
16.下列计算正确的是( )
| A. | (6a9)÷(3a3)=2a3 | B. | (-4x3y)÷(2x2y)=-2x | C. | (x-y)3÷(y-x)=(y一x)2 | D. | am÷an÷ap=am-n+p |
18.下列各式中正确的是( )
| A. | $\sqrt{9}$=±3 | B. | $\sqrt{-16}$=-4 | C. | (-$\sqrt{3}$)2=9 | D. | $\sqrt{(-5)^{2}}$=5 |