题目内容

12.顺次连结菱形四边中点所得的四边形一定是(  )
A.平行四边形B.矩形C.菱形D.正方形

分析 根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.

解答 解:如图,四边形ABCD是菱形,且E、F、G、H分别是AB、BC、CD、AD的中点,
则EH∥FG∥BD,EF=FG=$\frac{1}{2}$BD;EF∥HG∥AC,EF=HG=$\frac{1}{2}$AC,AC⊥BD.
故四边形EFGH是平行四边形,
又∵AC⊥BD,
∴EH⊥EF,∠HEF=90°
∴边形EFGH是矩形.
故选:B.

点评 本题考查了中点四边形.能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网