ÌâÄ¿ÄÚÈÝ
¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÈçͼËùʾ£¬¸ø³öÏÂÁÐ˵·¨£º¢Ùac£¾0£»¢Ú2a+b=0£»¢Ûa+b+c=0£»¢Üµ±x£¾1ʱ£¬º¯ÊýyËæxµÄÔö´ó¶øÔö´ó£»¢Ýµ±y£¾0ʱ£¬-1£¼x£¼3£®ÆäÖУ¬ÕýÈ·µÄ˵·¨ÓÐ___________£¨Çëд³öËùÓÐÕýȷ˵·¨µÄÐòºÅ£©£®
![]()
Èçͼ£¬Ò»Ë®¿â´ó°ÓµÄºá¶ÏÃæÎªÌÝÐÎABCD£¬°Ó¶¥BC¿í6Ã×£¬°Ó¸ß20Ã×£¬Ð±ÆÂABµÄÆÂ¶Èi=1£º2.5£¬Ð±ÆÂCDµÄÆÂ½ÇΪ30¶È£¬Ôò°Óµ×ADµÄ³¤¶ÈΪ£¨¡¡¡¡£©
![]()
A. 56Ã× B. 66Ã× C. £¨56+20
£©Ã× D. £¨50
+20
£©Ã×
-6xyz+3xy2-9x2yµÄ¹«ÒòʽÊÇ£¨ £©
A. -3x B. 3xz C. 3yz D. -3xy
ÏÂÁи÷ʽµÄÒòʽ·Ö½âÖÐÕýÈ·µÄÊÇ£¨ £©
A. -m2+mn-m=-m(m+n-1) B. 9abc-6a2b2=3abc(3-2ab)
C. 3a2x-6bx+3x=3x(a2-2b) D.
ab2+
a2b=
ab(a+b)
°ÑÅ×ÎïÏß
Æ½ÒÆµÃµ½Å×ÎïÏßm£¬Å×ÎïÏßm¾¹ýµãA£¨-6£¬0£©ºÍÔµãO£¨0£¬0£©£¬ËüµÄ¶¥µãΪP£¬ËüµÄ¶Ô³ÆÖáÓëÅ×ÎïÏß
½»ÓÚµãQ£®
![]()
£¨1£©Çó¶¥µãPµÄ×ø±ê£»
£¨2£©Ð´³öÆ½ÒÆ¹ý³Ì£»
£¨3£©ÇóͼÖÐÒõÓ°²¿·ÖµÄÃæ»ý£®
Ö±½Ç×ø±êÆ½ÃæÉϽ«¶þ´Îº¯Êý
µÄͼÏóÏò×óÆ½ÒÆ1¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î»£¬ÔòÆä¶¥µãΪ£¨¡¡¡¡£©
A. £¨0£¬0£©
B. £¨1£¬-2£©
C. £¨0£¬-1£©
D. £¨-2£¬1£©
Íõ·¼½«ÈçͼËùʾµÄÈýÌõˮƽֱÏß
£¬
£¬
µÄÆäÖÐÒ»Ìõ¼ÇΪxÖᣨÏòÓÒΪÕý·½Ïò£©£¬ÈýÌõÊúÖ±Ö±Ïß
£¬
£¬
µÄÆäÖÐÒ»Ìõ¼ÇΪyÖᣨÏòÉÏΪÕý·½Ïò£©£¬²¢ÔÚ´Ë×ø±êÆ½ÃæÄÚ»³öÁËÅ×ÎïÏß
£¬ÔòËýËùÑ¡ÔñµÄxÖáºÍyÖá·Ö±ðΪ£¨¡¡¡¡£©
![]()
A.
£¬ ![]()
B.
£¬ ![]()
C.
£¬ ![]()
D.
£¬ ![]()
ÈôÅ×ÎïÏß¾¹ýµã(3£¬0)ºÍ(2£¬£3)£¬ÇÒÒÔÖ±Ïßx£½1Ϊ¶Ô³ÆÖᣬÔò¸ÃÅ×ÎïÏߵĽâÎöʽΪ( )
A. y£½£x2£2x£3 B. y£½x2£2x£«3
C. y£½x2£2x£3 D. y£½£x2£«2x£3
·½³Ì
µÄ½âÊÇ______£®