题目内容

3.以点A、B、C为圆心的圆分别记作⊙A、⊙B、⊙C,其中⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,如果这三个圆两两外切,那么cosB的值是$\frac{3}{5}$.

分析 由已知条件得出△ABC的三边长,由勾股定理的逆定理证明△ABC是直角三角形,∠A=90°,再由三角函数的定义即可得出结果.

解答 解:如图所示:
∵⊙A的半径长为1,⊙B的半径长为2,⊙C的半径长为3,且这三个圆两两外切,
∴AB=1+2=3,AC=3+1=4,BC=3+2=5,
∵AB2+AC2=BC2
∴△ABC是直角三角形,∠A=90°,
∴cosB=$\frac{AB}{BC}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查了相切两圆的性质、勾股定理的逆定理、三角函数;熟练掌握相切两圆的性质,由勾股定理的逆定理证出三角形是直角三角形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网