题目内容

10.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2)请直接写出当AP为何值时,四边形PMEN是菱形.

分析 (1)由M、N、E分别是PD、PC、CD的中点,根据三角形中位线的性质,可证得ME∥PC,EN∥PD,继而证得四边形PMEN是平行四边形;
(2)由AP=BP=5,可证得△APD≌△BPC(SAS),继而可得PD=PC,则可得PM=EM=EN=PN,继而证得四边形PMEN是菱形.

解答 (1)证明:∵M,E分别为PD,CD的中点,
∴ME∥PC,
同理可证:ME∥PD,
∴四边形PMEN为平行四边形;

(2)解:当PA=5时,四边形PMEN为菱形.
理由:∵四边形ABCD是矩形,
∴∠A=∠B=90°,AD=BC,
∵AP=5,AB=CD=10,
∴AP=BP,
在△APD和△BPC中,
$\left\{\begin{array}{l}{AP=BP}\\{∠A=∠B}\\{AD=BC}\end{array}\right.$,
∴△APD≌△BPC(SAS),
∴PD=PC,
∵M、N、E分别是PD、PC、CD的中点,
∴EN=PM=$\frac{1}{2}$PD,PN=EM=$\frac{1}{2}$PC,
∴PM=EM=EN=PN,
∴四边形PMEN是菱形.

点评 此题考查了矩形的性质、菱形的判定、全等三角形的判定与性质以及三角形中位线的性质.注意利用三角形中位线的性质求解是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网