题目内容

15.有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程.
(1)解题与归纳
①小明摘选了以下各题,请你帮他完成填空.$\sqrt{2^2}$=2; $\sqrt{5^2}$=5; $\sqrt{6^2}$=6;$\sqrt{0^2}$=0; $\sqrt{{{({-3})}^2}}$=3; $\sqrt{{{({-6})}^2}}$=6;
②归纳:对于任意数a,有$\sqrt{a^2}$=|a|=$\left\{\begin{array}{l}{a(a>0)}\\{0(a=0)}\\{-a(a<0)}\end{array}\right.$
③小芳摘选了以下各题,请你帮她完成填空.$(\sqrt{4}{)^2}$=4; $(\sqrt{9}{)^2}$=9; $(\sqrt{25}{)^2}$=25;$(\sqrt{36}{)^2}$=36;$(\sqrt{49}{)^2}$=49; $(\sqrt{0}{)^2}$=0;
④归纳:对于任意非负数a,有$(\sqrt{a}{)^2}$=a
(2)应用
根据他们归纳得出的结论,解答问题.
数a,b在数轴上的位置如图所示,化简:$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$+$\sqrt{(a-b)^{2}}$-$(\sqrt{b-a}{)^2}$.

分析 (1)根据要求填空即可;
(2)先根据数轴上点的位置确定:a<0,b>0,b>a,再根据(1)中的公式代入计算即可.

解答 解:(1)$\sqrt{2^2}$=2; $\sqrt{5^2}$=5; $\sqrt{6^2}$=6;$\sqrt{0^2}$=0; $\sqrt{{{({-3})}^2}}$=|-3|=3; $\sqrt{{{({-6})}^2}}$=|-6|=6;
故答案为:2,5,6,0,3,6;
②对于任意数a,有$\sqrt{a^2}$=|a|=$\left\{\begin{array}{l}{a(a>0)}\\{0(a=0)}\\{-a(a<0)}\end{array}\right.$,
故答案为:|a|=$\left\{\begin{array}{l}{a(a>0)}\\{0(a=0)}\\{-a(a<0)}\end{array}\right.$;
③$(\sqrt{4}{)^2}$=4; $(\sqrt{9}{)^2}$=9; $(\sqrt{25}{)^2}$=25;$(\sqrt{36}{)^2}$=36;$(\sqrt{49}{)^2}$=49; $(\sqrt{0}{)^2}$=0;

故答案为:4,9,25,36,49,0   
④对于任意非负数a,有$(\sqrt{a}{)^2}$=a,
故答案为:a;
(2)由数轴得:a<0,b>0,b>a,
∴b-a>0
化简:$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$+$\sqrt{(a-b)^{2}}$-$(\sqrt{b-a}{)^2}$.
=|a|-|b|+|a-b|-(b-a)
=-a-b+b-a-b+a
=-a-b.

点评 本题属于阅读理解问题,主要考查了算术平方根和平方的定义、数轴的知识,正确把握算术平方根定义是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网