题目内容
考点:平行四边形的性质
专题:
分析:根据平行四边形对边相等可得AD=BC=10,AB=CD=6,再利用勾股定理计算出AC长,然后根据平行四边形的面积公式可得面积.
解答:解:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,
∵AB=6,AD=10,
∴CD=6,CB=10,
∵AC⊥AB,
∴AC=
=8,
∴?ABCD的面积:AB•AC=6×8=48.
∴AD=BC,AB=CD,
∵AB=6,AD=10,
∴CD=6,CB=10,
∵AC⊥AB,
∴AC=
| CB2-AB2 |
∴?ABCD的面积:AB•AC=6×8=48.
点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形对边分别相等.
练习册系列答案
相关题目