题目内容

3.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.
(1)求证:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.

分析 (1)根据辅助线的性质得到AD=AB,∠ADC=∠ABC=90°,由邻补角的定义得到∠ADF=∠ABE=90°,于是得到结论;
(2)过点A作AH⊥DE于点H,根据勾股定理得到AE=$\sqrt{10}$,ED=$\sqrt{C{D}^{2}+C{E}^{2}}$=5,根据三角形的面积S△AED=$\frac{1}{2}$AD×BA=$\frac{9}{2}$,S△ADE=$\frac{1}{2}$ED×AH=$\frac{9}{2}$,求得AH=1.8,由三角函数的定义即可得到结论.

解答 解:(1)正方形ABCD中,
∵AD=AB,∠ADC=∠ABC=90°,
∴∠ADF=∠ABE=90°,
在△ADF与△ABE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠ADF=∠ABE}\\{DF=BE}\end{array}\right.$,
∴△ADF≌△ABE;


(2)过点A作AH⊥DE于点H,
在Rt△ABE中,∵AB=BC=3,
∵BE=1,
∴AE=$\sqrt{10}$,ED=$\sqrt{C{D}^{2}+C{E}^{2}}$=5,
∵S△AED=$\frac{1}{2}$AD×BA=$\frac{9}{2}$,
S△ADE=$\frac{1}{2}$ED×AH=$\frac{9}{2}$,
解出AH=1.8,
在Rt△AHE中,EH=2.6,
∴tan∠AED=$\frac{AH}{EH}=\frac{1.8}{2.6}=\frac{9}{13}$.

点评 本题考查了正方形的性质,全等三角形的判定和性质,三角形的面积倒计时,勾股定理,熟练掌握正方形的性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网