题目内容
12.(1)求证:OE=OF;
(2)若EF⊥AC,△BEC的周长是10,求?ABCD的周长.
分析 根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;
(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出?ABCD的周长.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴OD=OB,DC∥AB,
∴∠FDO=∠EBO,
在△DFO和△BEO中,$\left\{\begin{array}{l}{∠FDO=∠EBO}&{\;}\\{OD=OB}&{\;}\\{∠FOD=∠EOB}&{\;}\end{array}\right.$,
∴△DFO≌△BEO(ASA),
∴OE=OF.
(2)解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,OA=OC,
∵EF⊥AC,
∴AE=CE,
∵△BEC的周长是10,
∴BC+BE+CE=BC+BE+AE=BC+AB=10,
∴?ABCD的周长=2(BC+AB)=20.
点评 本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
练习册系列答案
相关题目
2.下列运算正确的是( )
| A. | $\sqrt{ab}=\sqrt{a}•\sqrt{b}$ | B. | 23=6 | C. | (x+y)2=x2+y2 | D. | $\sqrt{8}=2\sqrt{2}$ |
4.
如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是( )
| A. | y=-$\sqrt{3}$x2+6$\sqrt{3}$x-8$\sqrt{3}$ | B. | y=-2$\sqrt{3}$x2-12$\sqrt{3}$x+16$\sqrt{3}$ | ||
| C. | y=2$\sqrt{3}$x2+12$\sqrt{3}$x-16$\sqrt{3}$ | D. | y=-$\frac{\sqrt{3}}{3}$x2+2$\sqrt{3}$x-$\frac{8\sqrt{3}}{3}$ |