题目内容

5.如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(1)下列条件中:①AB=AC;②AD是△ABC的中线;③AD是△ABC的角平分线;④AD是△ABC的高,请选择一个△ABC满足的条件,使得四边形AEDF为菱形,并证明;
答:我选择③.(填序号)
(2)在(1)选择的条件下,△ABC再满足条件:∠BAD=90°,四边形AEDF即成为正方形.

分析 (1)根据题意和图形和容易判断题目中的哪个条件满足条件,然后针对选择的条件给出证明即可;
(2)根据有一个角是直角的菱形是正方形,即可解答本题.

解答 解:(1)我选择:③,
故答案为:③,
证明:∵DE∥AC,DF∥AB
∴四边形AEDF为平行四边形,
∵AD是△ABC的角平分线
∴∠BAD=∠DAC,
∵DE∥AC,
∴∠DAC=∠ADE,
∴∠BAD=∠ADE,
∴EA=ED,
∴平行四边形AEDF是菱形;
(2)在(1)选择的条件下,△ABC再满足条件∠BAD=90°,
故答案:∠BAD=90°,
理由:由(1)知,四边形AEDF为菱形,
∴当∠BAD=90°,四边形AEDF即成为正方形(有一个角是直角的菱形是正方形).

点评 本题考查正方形的判定、菱形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的判定和正方形的判定解答本题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网