题目内容
9.已知一次函数y=2x+4(1)求图象与x轴的交点A的坐标,与y轴交点B的坐标;
(2)在(1)的条件下,求出△AOB的面积.
分析 (1)分别将x=0、y=0代入一次函数解析式中求出与之对应的y、x的值,进而即可得出点B、A的坐标;
(2)由点A、B的坐标即可得出OA、OB的长度,再根据三角形的面积公式即可求出△AOB的面积.
解答 解:(1)当x=0时,y=2x+4=4,
∴B(0,4);
当y=2x+4=0时,x=-2,
∴A(-2,0).
(2)∵A(-2,0),B(0,4),
∴OA=2,OB=4,
∴S△AOB=$\frac{1}{2}$OA•OB=4.
点评 本题考查了一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据一次函数图象上点的坐标特征求出一次函数图象与坐标轴的交点坐标;(2)套用三角形的面积求出S△AOB.
练习册系列答案
相关题目
12.下面甲、乙、丙三个三角形中,和△ABC全等的是( )

| A. | 乙和丙 | B. | 甲和乙 | C. | 甲和丙 | D. | 只有甲 |