ÌâÄ¿ÄÚÈÝ
| 1 |
| 2 |
| k |
| x |
£¨1£©Ð´³öÏß¶ÎABËùÔÚÖ±Ïߵıí´ïʽ£»
£¨2£©Óú¬tµÄ´úÊýʽ±íʾk£»
£¨3£©ÉèÉÏÊöÅ×ÎïÏßy=3x2+bx+cÓëÏß¶ÎABµÄÁíÒ»¸ö½»µãΪR£¬µ±¡÷PORµÄÃæ»ýµÈÓÚ
| 1 |
| 6 |
| k |
| x |
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾ÝµãAºÍµãBµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨È·¶¨Ò»´Îº¯ÊýµÄ½âÎöʽ¼´¿É£»
£¨2£©¸ù¾ÝµãP£¨t£¬m£©ÊÇAB£ºy=-x+1ÉÏÒ»µã£¬µÃµ½m=1-t£¬¼´µãP£¨t£¬1-t£©È»ºó¸ù¾ÝË«ÇúÏßy=
¾¹ýµãP£¨t£¬1-t£©£¬µÃµ½k=xy=t£¨1-t£©´Ó¶øÓÃt±íʾ³ö·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©Ê×ÏÈÁªÁ¢y=-x+1ºÍy=
£¬µÃµ½P£¨t£¬1-t£©ºÍQ£¨1-t£¬t£©£¬È»ºó¸ù¾ÝµãQ£¨1-t£¬t£©ÎªÅ×ÎïÏßy=3x2+bx+cµÄ¶¥µã£¬µÃµ½Å×ÎïÏßy=3£¨x-1+t£©2+t£¬ÔÙ´ÎÁªÁ¢y=-x+1ºÍy=3£¨x-1+t£©2+t£¬±íʾ³öQ£¨1-t£¬t£©ºÍR£¨
-t£¬t+
£©£¬´Ó¶øµÃµ½S¡÷POR=
|
-2t|£¬¸ù¾ÝS¡÷POR=
ʱȷ¶¨tµÄÖµ£¬´Ó¶øÇóµÃË«ÇúÏߺÍÅ×ÎïÏߵĽâÎöʽ£®
£¨2£©¸ù¾ÝµãP£¨t£¬m£©ÊÇAB£ºy=-x+1ÉÏÒ»µã£¬µÃµ½m=1-t£¬¼´µãP£¨t£¬1-t£©È»ºó¸ù¾ÝË«ÇúÏßy=
| k |
| x |
£¨3£©Ê×ÏÈÁªÁ¢y=-x+1ºÍy=
| t(1-t) |
| x |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 6 |
½â´ð£º½â£ºÈçͼ£¬£¨1£©ÉèÏß¶ÎABËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬
¡ßµãA£¨0£¬1£©£¬µãB£¨1£¬0£©£¬
¡à
½âµÃ£ºk=-1£¬b=1£¬
¡àÏß¶ÎABËùÔÚÖ±Ïߵıí´ïʽ£ºy=-x+1£»

£¨2£©¡ßµãP£¨t£¬m£©ÊÇAB£ºy=-x+1ÉÏÒ»µã£¬
¡àm=1-t£¬¼´µãP£¨t£¬1-t£©
ÓÖ¡ßË«ÇúÏßy=
¾¹ýµãP£¨t£¬1-t£©£¬
¡àk=xy=t£¨1-t£©
¼´Ë«ÇúÏßy=
£®
£¨3£©ÁªÁ¢y=-x+1ºÍy=
£¬
½âµÃ£¬x=t£¬y=1-t£¬»òx=1-t£¬y=t£¬
µÃP£¨t£¬1-t£©ºÍQ£¨1-t£¬t£©£¬
¡ßµãQ£¨1-t£¬t£©ÎªÅ×ÎïÏßy=3x2+bx+cµÄ¶¥µã£¬
¡àÅ×ÎïÏßy=3£¨x-1+t£©2+t£¬
ÁªÁ¢y=-x+1ºÍy=3£¨x-1+t£©2+t£¬
ÕûÀíµÃ£¬3£¨x-1+t£©2+£¨x-1+t£©=0
½âµÃ£¬x=1-t£¬y=t£¬»òx=
-t£¬y=t+
£¬
µÃQ£¨1-t£¬t£©ºÍR£¨
-t£¬t+
£©£¬
¡àS¡÷POR=
|
-2t|£¬
µ±S¡÷POR=
ʱ£¬|
-2t|=
£¬
½âµÃt=
£¬»òt=
£¬
¡ß0£¼t£¼
£¬¡àt=
£¬
¡à´Ëʱ£¬k=t£¨1-t£©=
¡à´Ëʱ˫ÇúÏßy=
£¬Å×ÎïÏßy=3£¨x-
£©2+
£®
¡ßµãA£¨0£¬1£©£¬µãB£¨1£¬0£©£¬
¡à
|
½âµÃ£ºk=-1£¬b=1£¬
¡àÏß¶ÎABËùÔÚÖ±Ïߵıí´ïʽ£ºy=-x+1£»
£¨2£©¡ßµãP£¨t£¬m£©ÊÇAB£ºy=-x+1ÉÏÒ»µã£¬
¡àm=1-t£¬¼´µãP£¨t£¬1-t£©
ÓÖ¡ßË«ÇúÏßy=
| k |
| x |
¡àk=xy=t£¨1-t£©
¼´Ë«ÇúÏßy=
| t(1-t) |
| x |
£¨3£©ÁªÁ¢y=-x+1ºÍy=
| t(1-t) |
| x |
½âµÃ£¬x=t£¬y=1-t£¬»òx=1-t£¬y=t£¬
µÃP£¨t£¬1-t£©ºÍQ£¨1-t£¬t£©£¬
¡ßµãQ£¨1-t£¬t£©ÎªÅ×ÎïÏßy=3x2+bx+cµÄ¶¥µã£¬
¡àÅ×ÎïÏßy=3£¨x-1+t£©2+t£¬
ÁªÁ¢y=-x+1ºÍy=3£¨x-1+t£©2+t£¬
ÕûÀíµÃ£¬3£¨x-1+t£©2+£¨x-1+t£©=0
½âµÃ£¬x=1-t£¬y=t£¬»òx=
| 2 |
| 3 |
| 1 |
| 3 |
µÃQ£¨1-t£¬t£©ºÍR£¨
| 2 |
| 3 |
| 1 |
| 3 |
¡àS¡÷POR=
| 1 |
| 2 |
| 2 |
| 3 |
µ±S¡÷POR=
| 1 |
| 6 |
| 2 |
| 3 |
| 1 |
| 3 |
½âµÃt=
| 1 |
| 2 |
| 1 |
| 6 |
¡ß0£¼t£¼
| 1 |
| 2 |
| 1 |
| 6 |
¡à´Ëʱ£¬k=t£¨1-t£©=
| 5 |
| 36 |
¡à´Ëʱ˫ÇúÏßy=
| 5 |
| 36x |
| 5 |
| 6 |
| 1 |
| 6 |
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏ֪ʶ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĶ¥µã¹«Ê½ºÍÈý½ÇÐεÄÃæ»ýÇ󷨣®ÔÚÇóÓйض¯µãÎÊÌâʱҪעÒâ·ÖÎöÌâÒâ·ÖÇé¿öÌÖÂÛ½á¹û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éèa¡¢bÊÇ·½³Ìx2-x-2014=0µÄÁ½¸öʵÊý¸ù£¬Ôòa2+2a+3bµÄֵΪ£¨¡¡¡¡£©
| A¡¢2015 | B¡¢2016 |
| C¡¢2017 | D¡¢2018 |
| 3 |
| 4 |
| A¡¢6.3Ã× | B¡¢7.5Ã× |
| C¡¢8Ã× | D¡¢6.5Ã× |
Ò»¸ö¶à±ßÐεÄÄڽǺÍÊÇ1980¡ã£¬ÄÇôÕâ¸ö¶à±ßÐεıßÊýΪ£¨¡¡¡¡£©
| A¡¢11 | B¡¢12 | C¡¢13 | D¡¢14 |