ÌâÄ¿ÄÚÈÝ

Èçͼ£¬ÒÑÖªµãA£¨0£¬1£©£¬µãB£¨1£¬0£©£®µãP£¨t£¬m£©ÊÇÏß¶ÎABÉÏÒ»¶¯µã£¬ÇÒ0£¼t£¼
1
2
£¬¾­¹ýµãPµÄË«ÇúÏßy=
k
x
ÓëÏß¶ÎABÏཻÓÚÁíÒ»µãQ£¬²¢ÇÒµãQÊÇÅ×ÎïÏßy=3x2+bx+cµÄ¶¥µã£®
£¨1£©Ð´³öÏß¶ÎABËùÔÚÖ±Ïߵıí´ïʽ£»
£¨2£©Óú¬tµÄ´úÊýʽ±íʾk£»
£¨3£©ÉèÉÏÊöÅ×ÎïÏßy=3x2+bx+cÓëÏß¶ÎABµÄÁíÒ»¸ö½»µãΪR£¬µ±¡÷PORµÄÃæ»ýµÈÓÚ
1
6
 Ê±£¬·Ö±ðÇóË«ÇúÏßy=
k
x
ºÍÅ×ÎïÏßy=ax2+bx+cµÄ±í´ïʽ£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©¸ù¾ÝµãAºÍµãBµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨È·¶¨Ò»´Îº¯ÊýµÄ½âÎöʽ¼´¿É£»
£¨2£©¸ù¾ÝµãP£¨t£¬m£©ÊÇAB£ºy=-x+1ÉÏÒ»µã£¬µÃµ½m=1-t£¬¼´µãP£¨t£¬1-t£©È»ºó¸ù¾ÝË«ÇúÏßy=
k
x
¾­¹ýµãP£¨t£¬1-t£©£¬µÃµ½k=xy=t£¨1-t£©´Ó¶øÓÃt±íʾ³ö·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©Ê×ÏÈÁªÁ¢y=-x+1ºÍy=
t(1-t)
x
£¬µÃµ½P£¨t£¬1-t£©ºÍQ£¨1-t£¬t£©£¬È»ºó¸ù¾ÝµãQ£¨1-t£¬t£©ÎªÅ×ÎïÏßy=3x2+bx+cµÄ¶¥µã£¬µÃµ½Å×ÎïÏßy=3£¨x-1+t£©2+t£¬ÔÙ´ÎÁªÁ¢y=-x+1ºÍy=3£¨x-1+t£©2+t£¬±íʾ³öQ£¨1-t£¬t£©ºÍR£¨
2
3
-t£¬t+
1
3
£©£¬´Ó¶øµÃµ½S¡÷POR=
1
2
|
2
3
-2t|£¬¸ù¾ÝS¡÷POR=
1
6
ʱȷ¶¨tµÄÖµ£¬´Ó¶øÇóµÃË«ÇúÏߺÍÅ×ÎïÏߵĽâÎöʽ£®
½â´ð£º½â£ºÈçͼ£¬£¨1£©ÉèÏß¶ÎABËùÔÚÖ±ÏߵĽâÎöʽΪy=kx+b£¬
¡ßµãA£¨0£¬1£©£¬µãB£¨1£¬0£©£¬
¡à
b=1
k+b=0

½âµÃ£ºk=-1£¬b=1£¬
¡àÏß¶ÎABËùÔÚÖ±Ïߵıí´ïʽ£ºy=-x+1£»

£¨2£©¡ßµãP£¨t£¬m£©ÊÇAB£ºy=-x+1ÉÏÒ»µã£¬
¡àm=1-t£¬¼´µãP£¨t£¬1-t£©
ÓÖ¡ßË«ÇúÏßy=
k
x
¾­¹ýµãP£¨t£¬1-t£©£¬
¡àk=xy=t£¨1-t£©
¼´Ë«ÇúÏßy=
t(1-t)
x
£®

£¨3£©ÁªÁ¢y=-x+1ºÍy=
t(1-t)
x
£¬
½âµÃ£¬x=t£¬y=1-t£¬»òx=1-t£¬y=t£¬
µÃP£¨t£¬1-t£©ºÍQ£¨1-t£¬t£©£¬
¡ßµãQ£¨1-t£¬t£©ÎªÅ×ÎïÏßy=3x2+bx+cµÄ¶¥µã£¬
¡àÅ×ÎïÏßy=3£¨x-1+t£©2+t£¬
ÁªÁ¢y=-x+1ºÍy=3£¨x-1+t£©2+t£¬
ÕûÀíµÃ£¬3£¨x-1+t£©2+£¨x-1+t£©=0
½âµÃ£¬x=1-t£¬y=t£¬»òx=
2
3
-t£¬y=t+
1
3
£¬
µÃQ£¨1-t£¬t£©ºÍR£¨
2
3
-t£¬t+
1
3
£©£¬
¡àS¡÷POR=
1
2
|
2
3
-2t|£¬
µ±S¡÷POR=
1
6
ʱ£¬|
2
3
-2t|=
1
3
£¬
½âµÃt=
1
2
£¬»òt=
1
6
£¬
¡ß0£¼t£¼
1
2
£¬¡àt=
1
6
£¬
¡à´Ëʱ£¬k=t£¨1-t£©=
5
36

¡à´Ëʱ˫ÇúÏßy=
5
36x
£¬Å×ÎïÏßy=3£¨x-
5
6
£©2+
1
6
£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏ֪ʶ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĶ¥µã¹«Ê½ºÍÈý½ÇÐεÄÃæ»ýÇ󷨣®ÔÚÇóÓйض¯µãÎÊÌâʱҪעÒâ·ÖÎöÌâÒâ·ÖÇé¿öÌÖÂÛ½á¹û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø