题目内容

11.如图,在△ABC中,∠C=35°,AB=AD,DE是AC的垂直平分线,则∠BAD=40度.

分析 根据线段的垂直平分线的性质得到DA=DC,根据等腰三角形的性质和三角形外角的性质求出∠ADB的度数,根据等腰三角形的性质和三角形内角和定理计算即可.

解答 解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DAC=∠C=35°,
∴∠ADB=∠DAC+∠C=70°,
∵AB=AD,
∴∠B=∠ADB=70°,
∴∠BAD=180°-∠B-∠ADB=40°,
故答案为:40.

点评 本题考查的是线段的垂直平分线的性质和等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网